
Some thoughts on Floating-Point

Jean-Michel Muller, CNRS/LIP

FPTalks 2025 – July 10, 2025

1



In this brief presentation

▶ just a few thoughts on what we should require, specify, standardize. . . in
FP arithmetic;

▶ goal: preserve consistance, portability, re-usability, reproducibility as much
as possible.

2



44 years ago. . . a jungle of incompatible systems

Machine Underflow Overflow

DEC PDP-11, VAX, F and D formats 2−128 ≈ 2.9 × 10−39 2127 ≈ 1.7 × 1038

DEC PDP-10; Honeywell 600, 6000; 2−129 ≈ 1.5 × 10−39 2127 ≈ 1.7 × 1038

Univac 110x single; IBM 709X, 704X
Burroughs 6X00 single 8−51 ≈ 8.8 × 10−47 876 ≈ 4.3 × 1068

H-P 3000 2−256 ≈ 8.6 × 10−78 2256 ≈ 1.2 × 1077

IBM 360, 370; Amdahl; 16−65 ≈ 5.4 × 10−79 1663 ≈ 7.2 × 1075

DG Eclipse M/600; . . .
Most handheld calculators 10−99 10100

CDC 6X00, 7X00, Cyber 2−976 ≈ 1.5 × 10−294 21070 ≈ 1.3 × 10322

DEC VAX G format 2−1024 ≈ 5.6 × 10−309 21023 ≈ 9 × 10307

Source: W. Kahan, Why do we need a Floating-Point Standard, 1981.

3



44 years ago. . . a jungle of incompatible systems

▶ many vastly different FP environments (radix, precision, roundings,
exception handling);

▶ some pretty good, many pretty poor;
▶ extremely poor portability of numerical software;
▶ almost impossible to prove anything rigorously (a proof needs to start

from assumptions. . . what can you prove if you don’t know what a+ b
is?);

▶ need to know “wizard tricks” such as (0.5 - x) + 0.5 often better than
(1 - x) for small x;

4



Then came IEEE 754-1985

▶ single precision;
▶ double precision;
▶ correctly-rounded operations + FP → a uniform bound on relative error

→ the key to clean and rigorous numerical analysis à la Wilkinson;
▶ well-specified exception handling.

. . . and just like that, the jungle became a well-kept garden!

5



The jungle became a well-kept garden?

▶ Slight exaggeration. There were also the extended formats (essentially
the80-bit x87 double extended) with their good and bad consequences:

▶ generally more accurate calculations;
▶ frequently allows one to avoid spurious underflow or overflow in

intermediate calculations;
▶ the curse of double roundings;
▶ difficult to predict the accuracy of a calculation (e.g. on x86,

depending on whether intermediate results are stored in 80 bit
registers or 64 bit memory);

▶ the curse of the C long double data type (will be double, double
extended, or double-double depending on the environment).

But, anyway, IEEE-754 has been the greatest progress in numerical computing
since Konrad Zuse’s Z3.

6



This was facilitated by the small number of application
domains

Numerical simulation Financial calculations

7



Now the situation is quite different

Numerical simulation

Financial calculation
Games, entertainment

Machine learning Embedded computing

. . .

Extremely diverse requirements and characteristics in terms of speed, reliability,
accuracy, dynamic range, provability, reproducibility, energy consumption,
amount of data transfer between memory and processor, . . .

8



The other big changes

▶ The ratio
time to read/write in memory
time to perform +,×,÷,

√

has increased by more than 150 since 1985;

→ strong incentive to use small formats, even for applications that need much
accuracy and/or wide range.

▶ heterogeneity of computing platforms: CPUs, GPUs, Tensor cores, etc.

9



Welcome back to the jungle?

Format Precision smallest normal (black) max
or smallest nonzero (orange)

binary8p3 3 3.052 × 10−5 49152
binary8p4 4 7.812 × 10−3 224

OCP MX FP8E5M2 3 6.104 × 10−5 57344
OCP MX FP8E4M3 4 0.0156 448

Posit8 1–4 5.96 × 10−8 1.677 × 107

binary16 11 6.1035 × 10−5 65504
BFloat16 8 1.175 × 10−38 3.389 × 1038

Posit16 1–12 1.387 × 10−17 7.205 × 1016

binary32 24 1.175 × 10−38 3.402 × 1038

Posit32 1–28 7.723 × 10−37 1.329 × 1036

TensorFloat32 11 1.175 × 10−38 3.402 × 1038

10



What can we do to avoid complete chaos?

Specify, specify and specify → standardize.

▶ help interoperability between these various formats and environments;
▶ don’t have only one application in mind (design thinking);
▶ clear, simple and complete specification of arithmetic operations,

conversions, etc.

11



A lesson from Design thinking

⇒

▶ those who design chairs know that they will also be used as stepladders;
▶ warn these “careless” users, call them idiots?. . . they are there anyway;
▶ it’s best to take this use into account when designing a chair.

12



What does it mean for us?

There is nothing such as. . .
▶ an arithmetic (formats, operations) dedicated to one application: if it’s

fast, it will inevitably be used elsewhere anyway: success of
mixed-precision computing;

▶ a purely storage format: some will do arithmetic with it;
▶ an extended format that only serves for implementing functions for the

corresponding basic format.

Some applications need uniform relative error bound (error control in
numerical analysis), possibility of formal proof (avionics, automated
transportation) and therefore full specification. Must be carefully considered.

13



Correct rounding

▶ Tensor cores, “matrix” operators of the form ab + cd + · · · and similar: if
not fully specified, it’s difficult to prove anything. The lack of
specification undermines portability and reproducibility efforts;

▶ the specification must endure over time → software reusability;
▶ the only specification that can stand the test of time is correct rounding;

(and for example, a correctly-rounded ab + cd + e has many very nice
properties, see Useful applications of correctly-rounded operators of the
form ab + cd + e, ARITH 2024)

▶ we believe the same holds for the most “fundamental” elementary
functions: exp, log, sin, cos. . .

→ see Correctly-rounded evaluation of a function: why, how, and at what
cost?, to appear in ACM Computing Surveys
(https://dl.acm.org/doi/10.1145/3747840).

14

https://dl.acm.org/doi/10.1145/3747840


Mixed-precision computing

▶ not just a passing trend: it’s here to stay.
▶ in all complex-enough numerical calculations, all parts do not need the

same precision (initial vs final steps of iterative algorithms, residuals, etc.)

▶ Facilitate interoperability between formats, for instance:
• provide Round-to-Odd in the wider ones to avoid double-rounding issues;
• promote consistency between ranges: maybe generalize the FP32 vs

BFloat16 idea and have for each word length w , beyond the standard
“FPw ” format:

· a “high range” version with the exponent range of the next wider
std format?

· an “accurate” version with the exp. range of the next smaller std
format?

▶ a numerical analyst needs to know what a 16-bit tensor core actually
computes without having to do reverse engineering (again: clear,
unambigous specifications are essential).

15



Thank you!

16


